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Touch plays an important role in increasing immersion in virtual reality experiences. We imagine a device that can provide a variety of
physical interactions with shapes, textures, and other haptic affordances in a way that is modularly extendable. A multipurpose device
like this works towards a sustainable design and use ecosystem. We envision a wrist-worn device with multiple actuated pneumatic
haptic proxies that opens up new opportunities of haptic explorations. We present work which allows users to feel virtual objects of
varying shapes and textures. The users will also be able to physically feel interactions with these virtual objects when picked up or
thrown.
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1 INTRODUCTION

When considering sustainable haptic design, a major challenge is to provide not just one type of physical interaction,
but a variety of physical interactions with different shapes, textures, and other haptic affordances. Moreover, our haptic
systems ought to be able to modularly extend to support a wide range of emerging haptic interactions. There have
been examples of single functionality haptic devices that target shape change [22], texture change [24] and actuation of
passive proxies [14]. While these devices are an individual haptic display mode, we are not aware of a device which
addresses all three of these functionalities simultaneously. We envision a single device that incorporates all three -
providing access to multiple haptic proxies, shape change for the haptic proxies and dynamic forces on the hand when
interacting with these physical proxies.

Our device lets developers use one device to curate a large selection of experiences and sensations for a smooth
continuous experience, instead of depending on a multitude of single functionality haptic devices. This allows our
∗Both authors contributed equally to this research.
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device to create a sustainable design and use ecosystem. How might a device like this one foster haptic development in
both industry and academia? What new experiences and stories could be told with this additional level of immersion?
In this paper, we showcase our prototype system. We share how our device might open up new opportunities for haptic
development, and highlight steps forward to further study our system.

2 RELATEDWORKS

2.1 Passive Haptics

Many works have explored implementations of passive haptic props to improve immersion. iTurk utilizes a prop
tethered from the ceiling and utilized tracking to enable users to interact with non-actuated haptic objects in real time
[6]. Haptic-go-round introduces a motorized turntable that rotates the correct haptic device to the right direction at
the right time to match what users are about to touch [13]. Stair proxies were found to emulate a staircase experience
where users feel the illusion of walking up and down stairs [16]. Other works which use moving passive haptic proxies
include RoomShift [21], TouchMover [20], and Snake Charmer [2]. Additionally, haptic retargeting can manipulate a
user’s sense of vision to reduce the spatial mismatches [4] [7].

2.2 Pneumatics in HCI

Pneumatic shape changing proxies have great potential in virtual reality use cases. PneUI investigated using pneumatic
inflatables as shape changing proxies, where the shapes changed due to variation in pneumatic pressure [25]. PuPoP
expanded upon this idea by attaching the shape changing inflatables directly to the user’s hand [22]. This allows the
object to be deflated out of reach and then inflated on command when the user interacts with a virtual object [22].
Pneu-Multi-Tools introduces an auto-folding interface to expand the shapes possible using inflatable airbags [12].
HaPouch introduces phase change of a volatile liquid to inflate pouches on the fingertips [23].

2.3 Wrist-worn and Handheld Haptic Devices

In the field of haptic devices, there are several examples of wrist-worn devices. There have been a variety of wrist-worn
devices which provide thermal [5] [17] and vibrotactile [3] sensations on the wrist. There have also been devices which
deliver squeeze sensations [18]. Pneufetch uses a wristband with three pneumatically actuated nodes to create different
haptic cues[11]. HapWRAP is a pneumatic inflatable device that has tubes which wrap around the wrist that inflate and
deflate to provide users with natural cues on their skin [1].

There have also been several handheld haptic devices which can simulate the sensation of grabbing and texture
change. Some works such as Grabity [10] and Wolverine [8] use braking mechanisms for grasping that involve mostly
the full hand. Other works such as CLAW [9] and CapstanCrunch [19] focus on braking mechanisms for the index
and thumb for grasping. These works are not able to render the dynamic forces of objects entering and leaving your
hand. Haptic Pivot [14] solves dynamic forces of objects by pivoting a generic haptic proxy into the user’s hand with an
actuated arm. Torc [15] and Haptic Revolver [24] are devices which provide the feeling of changing textures for the
fingertips.

3 DESIGN SECTION

We focused on the following design objectives when considering sustainable haptic design and developing a multitool
for haptic interaction:
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Interactivity. Our device should be able to render force feedback for acquiring, grasping, and releasing virtual objects.
Our device should also actuate shape change through inflation/deflation for these shaped-proxies. When the user’s hand
moves towards a virtual object, the shaped-proxy should synchronously move into the user’s hand. These shaped-proxies
should be out of hand when unneeded.

Adaptability. Our device should provide haptic sensations for a variety of differently shaped virtual objects in
virtual reality scenes. Multiple shaped-proxies should be readily available to enter the user’s hands. Additionally, these
shaped-proxies should be able to be easily swapped to fit the use case of different VR scenes.

Wearability. Our device should be light-weight and comfortable. Our device should be able to deliver the physical
shaped-proxies comfortably into the user’s hand when needed.

Our prototype is an ungrounded, untethered wrist-worn device that is able to present up to three inflatable proxy
shapes (currently shown are sphere, cube, and rod). These inflatable shaped-proxies can be swapped and modified
based on the use case and are connected to two pneumatic motors which provide the inflation and deflation. The
shaped-proxies are connected to three servo actuated arms. These arms can pivot the three inflatables into and out of
the user’s grasping field, rendering dynamic forces and preventing accidental grasps.

Our system interfaces with the Unity game engine and Oculus Quest. When the user’s hand is within a certain
distance relative to the virtual object, the corresponding physical shaped-proxy begins to inflate/deflate and the object
goes into/out of the user’s hand by pivot movement of the arms. The Unity application sends commands to the
microcontroller (ESP32) through the REST API Server, and the microcontroller generates the hardware signals for the
pneumatic motors and servo motors.

Fig. 1. High Level System Diagram

4 PLANNED EVALUATION

From a system perspective, we want to evaluate how well we can make the shaped-inflatables readily available and
physically available when the user reaches out to grab the corresponding virtual object. We break down our system
evaluation into inflation/deflation times of the shaped-proxies, speed and force of servo arm actuation, the latency from
the virtual object grabbing to when the haptic proxy actuates into the user’s hand.

From a human-centered interaction perspective, we plan to explore how our system impacts users’ experience in VR
and examine how they interact with the virtual objects via physical shaped-proxies. We want to 1) study how multiple
inflatable shaped-proxies can enhance the virtual experience when performing advanced tasks that require multiple
virtual objects; 2) explore how stiffness of the object impacts the immersion and believability of the haptic proxy; 3)
evaluate the perception of dynamic forces on the user’s hand.
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5 FUTUREWORK

The ability to physically feel virtual objects offers a range of new research and training opportunities. We envision
the future of touch in the metaverse through networked haptics - users could throw a virtual object to another user
in an entirely different country, and both users could feel the forces of throwing and catching a physical object. We
envision the future of touch in the metaverse to feel real - virtual objects and physical shaped-proxies interactions are
1:1 mapped and modifications to the inflatable shaped-proxies could provide varying textures. We envision the future
of touch in the metaverse for proxies to feel dynamic - alternating inflation and deflation of the proxies could mimic for
example the breathing of a live animal or the changing ripeness of a fruit.

Our device can bring an added dimension of richness and interactivity into VR content. For example, an experienced
gardener could teach a student on the other side of the world how to grow tomato plants using our device in VR. The
gardener could hand the student different virtual garden tools (mapped to different shaped-proxies) to work the garden.
The student would gain muscle memory working with these tools in VR. Once the tomato plant bore fruit (mapped
to one shaped-proxy), the student would be able to pick it from the plant. The device’s servo arms could provide the
resistance in pulling the virtual fruit from the virtual branch. The ripeness of the fruit could be conveyed through the
shaped-proxy’s stiffness.

We recognize the physical fabrication of the inflatable structures as a fundamental challenge for the widespread
adoption of this haptic technology and see this as an opportunity to tap into commercial manufacturing and product
resources rather than reinventing processes that likely already exist.

Looking forward, we envision our prototype system to provide a platform for continued development in haptic
experiences allowing us to touch the virtual world.

6 CONCLUSION

Touch plays an important role in increasing our immersion and practical capabilities in virtual experiences. We tackle
the challenge of providing a variety of physical interactions with shapes, textures, and dynamic forces that are modularly
extendable. Our system combines interactivity of physical haptic proxies, the adaptability of multiple readily available
proxies, and a wearability of a wrist-worn form factor. Developers can use our device to curate a large selection of
haptic sensations and experiences in virtual and mixed reality applications. We hope this system can democratize the
development of haptic experiences and make such explorations accessible to the community at large.
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